W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

On the descriptive power of LiDAR intensity images for segment-based loop closing in 3-D SLAM

Autorzy

[ 1 ] Instytut Robotyki i Inteligencji Maszynowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.2] Automatyka, elektronika i elektrotechnika

Rok publikacji

2021

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Streszczenie

EN We propose an extension to the segment-based global localization method for LiDAR SLAM using descriptors learned considering the visual context of the segments. A new architecture of the deep neural network is presented that learns the visual context acquired from synthetic LiDAR intensity images. This approach allows a single multi-beam LiDAR to produce rich and highly descriptive location signatures. The method is tested on two public datasets, demonstrating an improved descriptiveness of the new descriptors, and more reliable loop closure detection in SLAM. Attention analysis of the network is used to show the importance of focusing on the broader context rather than only on the 3-D segment.

Strony (od-do)

64 - 70

Książka

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , September 27 - October 1, 2021, Prague, Czech Republic, OnLine

Zaprezentowany na

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, 27.09.2021 - 01.10.2021, Prague, Czech Republic

Punktacja Ministerstwa / rozdział

20

Punktacja Ministerstwa / konferencja (CORE)

140

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.