Uniaxial Rotational Molding of Bio-Based Low-Density Polyethylene Filled with Black Tea Waste
[ 1 ] Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee
2023
scientific article
english
- rotational molding
- bio-polyethylene
- black tea
- waste filler
- composites
EN In this paper, the possibility of obtaining uniaxially rotomolded composite parts was discussed. The used matrix was bio-based low-density polyethylene (bioLDPE) filled with black tea waste (BTW) to prevent the thermooxidation of samples during processing. In rotational molding technology, the material is held at an elevated temperature in a molten state for a relatively long time, which can result in polymer oxidation. The Fourier transform infrared spectroscopy (FTIR) shows that adding 10 wt% of black tea waste has not led to the formation of carbonyl compounds in polyethylene, and adding 5 wt% and above prevents the appearance of the C–O stretching band connected with degradation of LDPE. The rheological analysis proved the stabilizing effect of black tea waste on the polyethylene matrix. The same temperature conditions of rotational molding did not change the chemical composition of black tea but slightly influenced the antioxidant activity of methanolic extracts; the detected changes suggest degradation is a color change, and the total color change parameter (ΔE) is 25. The oxidation level of unstabilized polyethylene measured using the carbonyl index exceeds 1.5 and gradually decreases with the addition of BTW. The BTW filler did not influence the melting properties of bioLDPE; the melting and crystallization temperature remained stable. The addition of BTW deteriorates the composite mechanical performance, including Young modulus and tensile strength, compared to the neat bioLDPE.
10.05.2023
3641-1 - 3641-18
Article Number: 3641
CC BY (attribution alone)
open journal
final published version
at the time of publication
140
3,1