Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.


Download file Download BibTeX


Analysis and Experimental Tests of Potential New Mounting Techniques for Use in Vibration Testing of Electric Vehicle Battery Packs on Electromagnetic Exciters: Advantages and Disadvantages


[ 1 ] Instytut Konstrukcji Maszyn, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Maszyn Roboczych i Pojazdów Samochodowych, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport
[2.9] Mechanical engineering

Year of publication


Published in

Applied Sciences

Journal year: 2024 | Journal volume: vol. 14 | Journal number: iss. 7

Article type

scientific article

Publication language


  • electric vehicle battery pack vibration testing
  • specimen fixture and fastening techniques
  • bolt
  • vacuum
  • electromagnetic fastening methods

EN The use of electric drives and energy storage devices in vehicles presents fresh challenges for system designers. Among these is addressing the susceptibility of battery packs to mechanical vibrations, necessitating vibration testing. In failure scenarios, like a battery fire, swiftly detaching the battery pack from the vibration platform is vital. It is also essential to ensure that the mounting system—fixture and fastener—effectively transfers vibration between the exciter and the battery pack. The article discusses the basic requirements for the fixture of specimens subjected to vibration testing and fastening it to a slip table of head expander, giving a better understanding of its role. It then presents the results of a theoretical analysis of the fixing forces and their laboratory testing using prototype customized fastening solutions with potential for use in vibration testing. The results of the conducted research and analyses demonstrate that non-standard mounting techniques have limited potential to replace screw mountings in vibration testing, particularly as fully universal techniques. However, the generated mounting forces, with potential resulting from the possibility of tailored implementation of the tested mounting techniques in the design of tables or head expanders, appropriately designed, justify further research work in this area.

Pages (from - to)

2920-1 - 2920-24





Article number: 2920

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text


Ministry points / journal


Impact Factor

2,5 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.