Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Method for Determining the Coefficient of Friction Variation Pattern as a Function of Density at Low Temperatures Using the Example of Dry Ice–Steel Contact

Authors

[ 1 ] Instytut Konstrukcji Maszyn, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee | [ SzD ] doctoral school student

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2024

Published in

Materials

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 10

Article type

scientific article

Publication language

english

Keywords
EN
  • coefficient of friction
  • compaction
  • densification
  • powders
  • dry ice
  • carbon dioxide (CO2)
Abstract

EN The developments in manufacturing technologies are expected to reduce energy input without compromising product quality. Regarding the material densification process, numerical simulation methods are applied to achieve this goal. In this case, relevant material models are built using functions that describe the variation in mechanical parameters of the material in question due to its deformation. The literature review conducted for this research has revealed a shortage of experimental research methods allowing a determination of the coefficient of friction at low temperatures, approximately 200 K. This article proposes a method for determining the friction coefficient of dry ice sliding against steel. The experimental results were analysed to obtain several functions describing the variation in the coefficient of friction. These functions were then compared using goodness-of-fit indexes. Finally, two functions with similar goodness-of-fit values were chosen. The findings of this research project will complement the already available information and may be used in various research and implementation projects related to the development or improvement of currently used crystallised carbon dioxide conversion processes.

Pages (from - to)

2396-1 - 2396-13

DOI

10.3390/ma17102396

URL

https://www.mdpi.com/1996-1944/17/10/2396

Comments

Article number: 2396

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,1 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.