W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Machine vision-based detection of forbidden elements in the high-speed automatic scrap sorting line

Autorzy

[ 1 ] Instytut Elektrotechniki i Elektroniki Przemysłowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.2] Automatyka, elektronika, elektrotechnika i technologie kosmiczne

Rok publikacji

2024

Opublikowano w

Waste Management

Rocznik: 2024 | Tom: vol. 189

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • waste management
  • automated scrap sorting
  • hazardous elements
  • MV
  • ML
Streszczenie

EN Highly efficient industrial sorting lines require fast and reliable classification methods. Various types of sensors are used to measure the features of an object to determine which output class it belongs to. One technique involves the use of an RGB camera and a machine learning classifier. The paper is focused on protecting the sorting process against prohibited and dangerous items potentially present in the sorted material that pose a threat to the sorting process or the subsequent metallurgical process. To achieve this, a convolutional neural network classifier was applied under real-life conditions to detect forbidden elements in copper-based metal scrap. A laboratory stand simulating the working conditions in a high-speed scrap sorting line was prepared. Using this custom stand, training and test sets for machine learning were gathered and labeled. An image preprocessing algorithm was designed to increase the robustness of the resulting forbidden element detector system. The performance of multiple neural network architectures and data set augmentations was analyzed. The highest accuracy of 98.03% and F1-score of 97.16% were achieved with a DenseNet-based classifier. The results of this paper show the feasibility of using the presented solution on a high-speed industrial line.

Strony (od-do)

243 - 253

DOI

10.1016/j.wasman.2024.08.015

URL

https://www.sciencedirect.com/science/article/pii/S0956053X24004495

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

czasopismo hybrydowe

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Punktacja Ministerstwa / czasopismo

200

Impact Factor

7,1 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.