Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method

Authors

[ 1 ] Instytut Inżynierii Środowiska i Instalacji Budowlanych, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2020

Published in

Energies

Journal year: 2020 | Journal volume: vol. 13 | Journal number: no. 6

Article type

scientific article

Publication language

english

Keywords
EN
  • global cost methodology
  • multi-objective optimisation
  • primary energy
  • thermo-modernisation
Abstract

EN This study presents a multi-objective optimisation of building thermo-modernisation for multi-family buildings. The applied model has considered alternative solutions for insulation materials, with different thicknesses and different types of windows. The weighted sum method was applied to find a solution considering the minimisation of global cost, primary energy ratio and CO2 emissions. The solutions were compared for a building equipped with natural ventilation, and with mechanical supply—exhaust ventilation. In reference to the two considered types of ventilation, we analysed how the modification of an insulation thickness, its type and the type of installed windows, can be converted into individual evaluation criteria. The weights of the considered criteria were changed; however, this had no influence on the optimal solution. If the aim is to achieve the standards of zero-energy buildings, natural ventilation cannot be applied, despite the high value of thermal insulation of the building envelopes. Alternative solutions exist for buildings with natural ventilation and mechanical ventilation with heat recovery, where the primary energy ratio is the same for both, but the global costs are different. The additional energy and environmental input for the production of materials and elements to be replaced are insignificant in comparison to the savings brought about by thermo-modernisation.

Date of online publication

19.03.2020

Pages (from - to)

1433-1 - 1433-19

DOI

10.3390/en13061433

URL

https://www.mdpi.com/1996-1073/13/6/1433

Comments

Article Number: 1433

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,004

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.