Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Improving the Blast Resistance of Large Steel Gates - Numerical Study

Authors

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering and transport

Year of publication

2020

Published in

Materials

Journal year: 2020 | Journal volume: vol. 13 | Journal number: iss. 9

Article type

scientific article

Publication language

english

Keywords
EN
  • blast gate
  • steel door
  • shock
  • impact
  • auxetic material
  • damping systems
Abstract

EN Blast resistant gates/doors are essential for sensitive infrastructure, such as embassies, ministries, or parliaments. Lightweight gates equipped with ‘energy absorbing systems’ have better operational performance than the traditional costly and bulky design. Graded auxetic structures have not yet been used as potential passive damping systems in the supporting frame of blast resistant gates. Consequently, this study tries to test if a uniaxial graded auxetic damper (UGAD) proposed by the authors in a recent article, namely the development of a new shock absorbing UGAD, could maintain a 3000 mm × 4500 mm steel gate operable after high blast peak reflected overpressure of 6.6 MPa, from 100 kg TNT at 5 m stand-off distance. The blast-induced response of the gate was assessed, with and without the proposed UGAD, using Abaqus/Explicit solver. Results showed that the attachment of the proposed UGAD to the gate led to a dramatic decrease in permanent deformations (a critical factor for gate operability after a blast event). Hence, a lighter, more economical gate (with 50% reduction in mass) was required to satisfy the operability condition. In addition, 49% of peak reaction forces were diminished, that have a direct impact on the supporting frame. Moreover, the results revealed that, in the numerical model, 56% of the achieved plastic dissipation energy was from the UGADs, and 44% from the gate. The outcomes of this research may have a positive impact on other sectors beyond academia, such as industry, economy, and public safety.

Pages (from - to)

2121-1 - 2121-21

DOI

10.3390/ma13092121

URL

https://www.mdpi.com/1996-1944/13/9/2121

Comments

article number: 2121

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,623

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.