Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Experimental study on combustion of CH4/NH3 fuel blends in an industrial furnace operated in flameless conditions

Authors

[ 1 ] Instytut Energetyki Cieplnej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2020

Published in

Thermal Science

Journal year: 2020 | Journal volume: vol. 24 | Journal number: no. 6A, part I

Article type

scientific article

Publication language

english

Keywords
EN
  • ammonia
  • flameless combustion
  • ammonia energy storage
  • fuel nitric oxide
  • CH4/NH3 combustion process
Abstract

EN This paper presents the results of an experimental study on the combustion process of methane mixed with NH3 in flameless mode. At a time of striving for CO2-free power, NH3 became a potential energy storage carrier fuel from renewable sources. Flameless combustion features low emissions and is a very efficient technology used in the power sector, as well as steel production, ceramics, etc. Industrial furnaces were tested in the context of pure methane combustion with an addition of NH3, up to 5%. Flameless combustion conditions were achieved with a regenerative gas burner system (high regenerative system). The burner consists of four ceramic regenerators allowing for continuous preheating of air, even up to 50 K lower than the temperature of the combustion chamber wall. Constant power of the introduced fuel was kept at 150 kW and the fuel-air equivalence ratio ranged from 0.75 to 0.95. The results have shown a growth of molar fraction of NO in flue gases when NH3 content in the fuel rose. The increase is more significant for the tests with a higher amount of oxygen in the combustion chamber (a lower fuel-air equivalence ratio). An addition of 5% of NH3 into the fuel caused an emission of NO at the levels of 113 ppmv and 462 ppmv (calculated to O2 = 0%), respectively for low and high fuel-air equivalence ratios.

Pages (from - to)

3625 - 3635

DOI

10.2298/TSCI200401282S

URL

http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98362000282S

License type

CC BY-NC-ND (attribution - noncommercial - no derivatives)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

40

Ministry points / journal in years 2017-2021

40

Impact Factor

1,625

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.