Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Logistics engineering curriculum integrated through student projects

Authors

[ 1 ] Katedra Zarządzania Produkcją i Logistyki, Wydział Inżynierii Zarządzania, Politechnika Poznańska | [ P ] employee

Year of publication

2011

Published in

Research in Logistics & Production

Journal year: 2011 | Journal volume: vol. 1 | Journal number: no. 1

Article type

scientific article

Publication language

english

Keywords
EN
  • logistics specialization
  • product development
  • manufacturing systems
  • business practices
Abstract

EN This paper describes an innovative curriculum developed for new Logistics Engineering degree programs at the Faculty of Engineering Management, Poznan University of Technology. The core of the program is based on a sequence of four major courses, which focus on the Product Development, Process Analysis and Optimization, Logistic Processes and Service Engineering. Each course is built around a practical team project. With the project effort as the background, the courses introduce students to key issues in global engineering competence, including collaboration and teamwork, work organization and management, engineering ethics, cross-cultural communication, critical thinking and problem solving, and integration strategies for design, manufacturing and marketing. Projects also introduce entrepreneurial components, as the teams have to develop their concepts in the context of a start-up company. The first course in the series, introduces 2nd year students to basic concepts of consumer product development. It covers the principles of design and innovation process, and also explains essential design tools, such as Quality Function Deployment and Pugh Matrices. It also reviews key manufacturing methods and systems. Students work in small teams to develop their own product ideas from initial concepts to a business plan for a start-up. The course is offered in English. The second course, offered to 3rd year students, introduces fundamental concepts related to industrial process analysis and improvement. Students learn necessary data collection and analysis techniques (such as, for example, Value Stream Mapping) and also the basics of process simulation using a commercial software package. Student teams work with industrial sponsors and develop competing innovative ideas for process transformation and improvement. While the first two courses have already been offered for the first time in the past year in the engineering program (level 1), the third course is still in the planning phase. It will be offered to 4th year students in the first year of their master’s program. It will focus on Supply Chain processes, assessment of their performance, lifecycle analysis and management. The student group project will be carried out in an industrial setting, dealing with real-life assignments. The final course, integrating knowledge acquired by the students in the preceding sequence, is focused on the issues of service engineering. It covers such topics as, for example, organizational design, global issues and design of service operations.

Pages (from - to)

29 - 44

Full text of article

Download file

Access level to full text

public

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.