Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment

Authors

[ 1 ] Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ 2 ] Instytut Inżynierii Środowiska i Instalacji Budowlanych, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ D ] phd student | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2021

Published in

Energies

Journal year: 2021 | Journal volume: vol. 14 | Journal number: no. 5

Article type

scientific article

Publication language

english

Keywords
EN
  • chemically enhanced primary treatment
  • sludge
  • anaerobic digestion
  • WWTP
  • energy balance
  • economic analysis
Abstract

EN The recent trend of turning wastewater treatment plants (WWTPs) into energy self-sufficient resource recovery facilities has led to a constant search for solutions that fit into that concept. One of them is chemically enhanced primary treatment (CEPT), which provides an opportunity to increase biogas production and to significantly reduce the amount of sludge for final disposal. Laboratory, pilot, and full-scale trials were conducted for the coagulation and sedimentation of primary sludge (PS) with iron sulphate (PIX). Energy and economic balance calculations were conducted based on the obtained results. Experimental trials indicated that CEPT contributed to an increase in biogas production by 21% and to a decrease in sludge volume for final disposal by 12% weight. Furthermore, the application of CEPT may lead to a decreased energy demand for aeration by 8%. The removal of nitrogen in an autotrophic manner in the side stream leads to a further reduction in energy consumption in WWTP (up to 20%). In consequence, the modeling results showed that it would be possible to increase the energy self-sufficiency for WWTP up to 93% if CEPT is applied or even higher (up to 96%) if, additionally, nitrogen removal in the side stream is implemented. It was concluded that CEPT would reduce the operating cost by over 650,000 EUR/year for WWTP at 1,000,000 people equivalent, with a municipal wastewater input of 105,000 m3/d.

Date of online publication

06.03.2021

Pages (from - to)

1445-1 - 1445-17

DOI

10.3390/en14051445

URL

https://www.mdpi.com/1996-1073/14/5/1445

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,252

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.