Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Monitoring, Detection and Locating of Transient Earth Fault Using Zero-Sequence Current and Cable Screen Earthing Current in Medium Voltage Cable and Mixed Feeders

Authors

[ 1 ] Instytut Elektroenergetyki, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2022

Published in

Energies

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 3

Article type

scientific article

Publication language

english

Keywords
EN
  • incipient earth fault
  • intermittent earth fault
  • transient earth fault
  • protection relay
  • cable screen
  • earth fault detection and location
Abstract

EN This paper presents the final development of an expert system utilizing a measurement of cable screen earthing transient current. The developed system allows for identification and location of earth fault in underground cable and mixed lines (underground cable and overhead line) and monitoring of an earthing system and cable screen connections. The unique feature of the developed earth fault locating system is the possibility of identification of line type and branch of the MV underground cable or mixed feeder under earth fault conditions. As a result, the time to remove failure can be greatly reduced and the number of earth fault indicators installed in the distribution network can also be reduced. Unfortunately, in order to operate properly, the previously developed system requires a fundamental—50 Hz component of the measured zero-sequence cable core current and cable screen earthing current; therefore, short transient earth faults without steady-state earth fault currents cannot be localized and categorized even though the transient earth faults have a negative impact on the power system. According to measurements performed by the authors, transient earth faults are relatively frequent, which causes stress to insulation. The number of transient earth faults may be reduced by ensuring proper maintenance of the distribution system. Unfortunately, because of the very large area of the distribution feeder, often in the range of tens of kilometers or even around a hundred kilometers, and many potential causes of earth faults, it is very difficult to localize the transient earth fault and determine the cause of the earth fault. Herein, we present the possible causes of transient earth faults and methods developed for the analysis of transient earth faults. Moreover, the novel algorithm for transient earth fault detection and location is proposed. The proposed algorithm has a self-learning capability and can identify branches of the distribution feeder under transient earth fault conditions. The effectiveness of the proposed algorithm is confirmed thanks to the performed network experiment.

Pages (from - to)

1066-1 - 1066-16

DOI

10.3390/en15031066

URL

https://www.mdpi.com/1996-1073/15/3/1066

Comments

article number: 1066

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.