Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Numerical Analysis of Dynamic Properties of an Auxetic Structure with Rotating Squares with Holes

Authors

[ 1 ] Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Mechaniki Stosowanej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2022

Published in

Materials

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 24

Article type

scientific article

Publication language

english

Keywords
EN
  • auxetic
  • effective properties
  • dynamics
  • vibration transmission loss
  • transmissibility
  • mechanical impedance
  • rotating units
Abstract

EN In this paper, a novel auxetic structure with rotating squares with holes is investigated. The unit cell of the structure consists of four units in the shape of a square with cut corners and holes. Finally, the structure represents a kind of modified auxetic structure made of rotating squares with holes or sheets of material with regularly arranged diamond and square cuts. Effective and dynamic properties of these structures depend on geometrical properties of the structure. The structures are characterized by an effective Poisson’s ratio from negative to positive values (from about minus one to about plus one). Numerical analysis is made for different geometrical features of the unit cells. The simulations enabled the determination of the dynamic characteristic of the analyzed structures using vibration transmission loss, transmissibility, and mechanical impedance. Numerical calculations were conducted using the finite element method. In the analyzed cases of cellular auxetic structures, a linear elasticity model of the material is assumed. The dynamic characteristic of modified rotating square structures is strongly dependent not only on frequency. The dynamic behavior could also be enhanced by adjusting the geometric parameter of the structure. Auxetic and non-auxetic structures show different static and dynamic properties. The dynamic properties of the analyzed structures were examined in order to determine the frequency ranges of dynamic loads for which the values of mechanical impedance and transmissibility are appropriate.

Date of online publication

07.12.2022

Pages (from - to)

8712-1 - 8712-20

DOI

10.3390/ma15248712

URL

https://www.mdpi.com/1996-1944/15/24/8712

Comments

Article Number: 8712

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.