Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Lean Methane Mixtures in Turbulent Jet Ignition Combustion System

Authors

[ 1 ] Instytut Silników Spalinowych i Napędów, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2023

Published in

Energies

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 3

Article type

scientific article

Publication language

english

Keywords
EN
  • combustion system
  • turbulent jet ignition
  • prechamber
  • combustion efficiency
  • CNG engine
Abstract

EN The development of modern vehicle drives is aimed at reducing fuel consumption (i.e., crude oil) and minimizing the exhaust emission of toxic components. One such development is the implementation of a two-stage combustion system. Such a system initiates ignition in the prechamber, and then the burning mixture flows into the main chamber, where it ignites the lean mixture. The system allows the efficient combustion of lean mixtures, both liquid and gaseous fuels, in the cylinder. This article proposes a solution for internal combustion engines with a cylinder capacity of approx. 500 cm3. The tests were carried out on a single-cylinder engine powered by pure methane supplied through a double, parallel injection system. A wide range of charge ignitability requires the use of an active chamber containing an injector and a spark plug. The tests were carried out at n = 1500 rpm with three load values (indicated mean effective pressure, IMEP): 2, 4 and 6 bar. All of these tests were carried out at a constant value of the center of combustion (CoC), 8 deg CA. This approach resulted in the ignition timing being the control signal for the CoC. As a result of the conducted research, it was found that an increase in the load, which improved the inter-chamber flow, allowed for the combustion of leaner mixtures without increasing the coefficient of variation, CoV(IMEP). The tests achieved a lean mixture combustion with a value of λ = 1.7 and an acceptable level of non-uniformity of the engine operation, CoV(IMEP) < 8%. The engine’s indicated efficiency when using a two-stage system reached a value of about 42% at λ = 1.5 (which is about 8 percentage points more than with a conventional combustion system at λ = 1.0).

Pages (from - to)

1236-1 - 1236-18

DOI

10.3390/en16031236

URL

https://www.mdpi.com/1996-1073/16/3/1236

Comments

article number: 1236

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.