Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Fractional-order mathematical model of single-mass rotor dynamics and stability

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Alexandria Engineering Journal

Journal year: 2023 | Journal volume: vol. 76

Article type

scientific article

Publication language

english

Keywords
EN
  • Fractional calculus
  • Forced oscillation technique
  • Damping force
  • Stability analysis
  • Critical frequency
  • Process innovation
Abstract

EN Ensuring the vibration reliability of rotary machines is based on the reliable mathematical model of rotor movement. Considering the critical factors leading to a stability loss is an important problem in up-to-date machinery. However, the presence of fractional-order hydrodynamic features of gap seals and the effect of anomalous energy dissipation lead to a need to clarify existing rotordynamic models by considering the fractional-order terms. Therefore, this article deals with the comprehensive modeling approach to study forced oscillations of a single-mass rotor and check its dynamic stability considering the fractional-order origin of the damping force. Moreover, the impact of fractional order on the damping factor and dynamic stability of whirl movement considering the circulation force in gap seals, is still not fully explored. This problem adds particular importance to the presented research. As a result, a single-mass flexible rotor model was extended by considering the fractional-order damping force. Moreover, based on the discovered asymptotic property of the Mittag-Leffler function, the impact of fractional order on the amplitude-frequency response was also determined. Finally, boundaries for dynamic stability loss were identified considering the fractional-order damping force. Overall, the study allowed the development and substantiation of a more generalized scientific and methodological approach to ensuring the vibration reliability of rotary machines.

Date of online publication

17.06.2023

Pages (from - to)

91 - 100

DOI

10.1016/j.aej.2023.06.024

URL

https://www.sciencedirect.com/science/article/pii/S111001682300491X?via%3Dihub

License type

CC BY-NC-ND (attribution - noncommercial - no derivatives)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

in press

Ministry points / journal

70

Impact Factor

6,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.