Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle

Authors

[ 1 ] Instytut Robotyki i Inteligencji Maszynowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technology

Year of publication

2023

Published in

Sensors

Journal year: 2023 | Journal volume: vol. 23 | Journal number: iss. 15

Article type

scientific article

Publication language

english

Keywords
EN
  • anti-collision methods
  • detection system
  • sensors
  • unmanned aerial vehicle
Abstract

EN Unmanned aerial vehicle (UAV) usage is increasing drastically worldwide as UAVs are used in various industries for many applications, such as inspection, logistics, agriculture, and many more. This is because performing a task using UAV makes the job more efficient and reduces the workload needed. However, for a UAV to be operated manually or autonomously, the UAV must be equipped with proper safety features. An anti-collision system is one of the most crucial and fundamental safety features that UAVs must be equipped with. The anti-collision system allows the UAV to maintain a safe distance from any obstacles. The anti-collision technologies are of crucial relevance to assure the survival and safety of UAVs. Anti-collision of UAVs can be varied in the aspect of sensor usage and the system’s working principle. This article provides a comprehensive overview of anti-collision technologies for UAVs. It also presents drone safety laws and regulations that prevent a collision at the policy level. The process of anti-collision technologies is studied from three aspects: Obstacle detection, collision prediction, and collision avoidance. A detailed overview and comparison of the methods of each element and an analysis of their advantages and disadvantages have been provided. In addition, the future trends of UAV anti-collision technologies from the viewpoint of fast obstacle detection and wireless networking are presented.

Date of online publication

30.07.2023

Pages (from - to)

6810-1 - 6810-13

DOI

10.3390/s23156810

URL

https://www.mdpi.com/1424-8220/23/15/6810

Comments

Article number: 6810

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Release date

30.07.2023

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

100

Impact Factor

3,9 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.