Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Influence of SLM parameters on CoCr alloy

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Acta Technica Napocensis Series: Applied Mathematics, Mechanics, and Engineering

Journal year: 2023 | Journal volume: vol. 66 | Journal number: iss. 2

Article type

scientific article

Publication language

english

Keywords
EN
  • CoCr alloy
  • tensile strength
  • CT investigation
  • porosity
  • hardness
Abstract

EN Among the most advanced technologies recently developed, selective laser melting (SLM) is one of the most innovative. The present SLM work aimed to determine the effect of laser power on hard metals such as cobalt chrome (CoCr) alloy. The following physical-mechanical proprieties were determined: ultimate tensile strength, Young modulus, surface hardness, and porosity level. Using industrial computer tomography (CT), the micro-porosity of SLM specimens was analyzed. It was observed that the laser power affects both the mechanical properties and microstructure of CoCr parts. Decreasing the porosity level will increase the mechanical resistance. The lowest porosity level was recorded on samples manufactured with 120 W. On the other hand, lower laser power (70 W) can improve the elasticity of SLM parts down to 19 GPa. The highest ultimate tensile strength was obtained at 120 W, maintaining constant the other SLM parameters. The highest surface hardness was 239 HB. Depending on implant requires, the SLM process can customize even the physical-mechanical properties of CoCr alloy. Future SLM research is needed to evaluate the fatigue limit of CoCr implants using the present technological parameters. From our point of view, the SLM technology will change the medical manufacturing industry, making it much flexible and customized.

Pages (from - to)

215 - 222

URL

https://atna-mam.utcluj.ro/index.php/Acta/article/view/2134

License type

CC BY-NC-ND (attribution - noncommercial - no derivatives)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

20

Impact Factor

0,3 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.