Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Influence of PPD and Mass Scaling Parameter on the Goodness of Fit of Dry Ice Compaction Curve Obtained in Numerical Simulations Utilizing Smoothed Particle Method (SPH) for Improving the Energy Efficiency of Dry Ice Compaction Process

Authors

[ 1 ] Instytut Konstrukcji Maszyn, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Energies

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 20

Article type

scientific article

Publication language

english

Keywords
EN
  • Smoothed Particle Method
  • SPH
  • FEM
  • mass scaling
  • dry ice
  • compaction
Abstract

EN The urgent need to reduce industrial electricity consumption due to diminishing fossil fuels and environmental concerns drives the pursuit of energy-efficient production processes. This study addresses this challenge by investigating the Smoothed Particle Method (SPH) for simulating dry ice compaction, an intricate process poorly addressed by conventional methods. The Finite Element Method (FEM) and SPH have been dealt with by researchers, yet a gap persists regarding SPH mesh parameters’ influence on the empirical curve fit. This research systematically explores Particle Packing Density (PPD) and Mass Scaling (MS) effects on the agreement between simulation and experimental outputs. The Sum of Squared Errors (SSE) method was used for this assessment. By comparing the obtained FEM and SPH results under diverse PPD and MS settings, this study sheds light on the SPH method’s potential in optimizing the dry ice compaction process’s efficiency. The SSE based analyses showed that the goodness of fit did not vary considerably for PDD values of 4 and up. In the case of MS, a better fit was obtained for its lower values. In turn, for the ultimate compression force FC, an empirical curve fit was obtained for PDD values of 4 and up. That said, the value of MS had no significant bearing on the ultimate compression force FC. The insights gleaned from this research can largely improve the existing sustainability practices and process design in various energy-conscious industries.

Pages (from - to)

7194-1 - 7194-12

DOI

10.3390/en16207194

URL

https://www.mdpi.com/1996-1073/16/20/7194

Comments

article number: 7194

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.