BIZON–UGV for Airport Pavement Testing: Mechanics and Control
[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee
[2.2] Automation, electronics, electrical engineering and space technologies
2024
scientific article
english
- finite element method
- mechanical stress and deformation
- airport pavement
- unmanned ground vehicle
- autopilot
- proportional–integral–derivative control
- feedforward control
EN The paper presents a study of the performance and development of unmanned ground vehicles (UGVs), establishing mathematical and numerical models of the chassis system. The model analysis is performed by 3D software package SolidWorks 2018 with finite element discretization. The mesh modelling and analysis are focused on studying the strength and stiffness of the robotic platform chassis and the distribution of stress and deformation in the extremal condition. The paper also presents an autopilot design with a new cascade control system for the autonomous motion of an unmanned ground vehicle based on proportional–integral–derivative (PID) and feedforward (FF) control. The PID-FF controller is part of a UGV used in a hybrid control system for precise control and stabilization, which is necessary to increase the vehicle motion stability and maneuver precision. The hybrid PID-FF control system proposed for the ground vehicle model gives satisfactory control quality while maintaining the simplicity of the control system. The presented tests performed in mechanical design and control analysis give good results and prove the usefulness of the designed unmanned device.
2472-1 - 2472-15
CC BY (attribution alone)
open journal
original author's version
at the time of publication
100
2,5 [List 2023]