Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

A Low-Complexity Start–Stop True Random Number Generator for FPGAs

Authors

[ 1 ] Instytut Telekomunikacji Multimedialnej, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2024

Published in

Applied Sciences

Journal year: 2024 | Journal volume: vol. 14 | Journal number: iss. 13

Article type

scientific article

Publication language

english

Keywords
EN
  • random number generator
  • true randomness
  • ring oscillators
  • entropy
  • restarts
  • statistical tests
  • FPGA
Abstract

EN This paper introduces a low-complexity start–stop true random number generator (TRNG) utilizing jitter in ring oscillators (ROs). Incorporating phase detectors enhances entropy extraction from the same number of ROs. The raw bits undergo online post-processing using the SHA-1 algorithm, which is widely supported by many programming languages. The output bit streams pass all NIST statistical tests (SP 800-22 and SP-90B). Bits are generated on demand, enhancing security by preventing eavesdropping during continuous bit production. The TRNG maintains its performance regardless of the FPGA manufacturer.

Pages (from - to)

5642-1 - 5642-11

DOI

10.3390/app14135642

URL

https://www.mdpi.com/2076-3417/14/13/5642

Comments

Article number: 5642

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Full text of article

Download file

Access level to full text

public

Ministry points / journal

100

Impact Factor

2,5 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.