Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

The Attractiveness of Regional Transport as a Direction for Improving Transport Energy Efficiency

Authors

[ 1 ] Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ 2 ] Instytut Transportu, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2024

Published in

Energies

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 19

Article type

scientific article

Publication language

english

Keywords
EN
  • public bus transport
  • regional transport
  • energy consumption of public transport
  • modal split
  • transport exclusion
Abstract

EN One of the ways to improve energy efficiency in transportation is through efforts aimed at increasing the usage of public transportation by residents. This, in turn, is closely related to residents’ preferences. One of the most frequently cited factors influencing the attractiveness and quality of public transportation is the frequency of connections. This is important not only for urban transport but also regional transport, which has significantly lower passenger flows. This paper aims to present how the frequency of connections affects the attractiveness of regional transport. An original method for determining the attractiveness of public transport, based on the share of adult, senior, and youth passengers with single tickets and monthly passes, is introduced. The results of research on the structure of passengers and flows to/from the district center are presented. Based on the research results, attractiveness factors are calculated for each town. The statistical analysis clearly indicates there is a strong correlation between the attractiveness of regional transport and the frequency of connections (Rs = 0.807, p = 0.001). Moreover, for every connection increase, the number of adult passengers will increase by an average of 1.5. Assuming that these additional passengers switch from individual to public transportation, the resulting reduction in energy consumption due to an increase of one connection is 0.33–0.69 kWh for each kilometer traveled by these passengers.

Pages (from - to)

4844-1 - 4844-21

DOI

10.3390/en17194844

URL

https://www.mdpi.com/1996-1073/17/19/4844

Comments

Article number: 4844

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.