Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Analysis of Energy Transfer in the Ignition System for High-Speed Combustion Engines

Authors

[ 1 ] Instytut Napędów i Lotnictwa, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee | [ S ] student

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2024

Published in

Energies

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 20

Article type

scientific article

Publication language

english

Keywords
EN
  • lean mixture ignition
  • electrical discharge energy
  • ignition system efficiency
  • energy flux in ignition system
  • optical investigation of ignition
Abstract

EN In order to produce reliable and reproducible ignition of lean fuel–air mixtures and highly stratified mixtures, it is necessary to ensure a high concentration of spark discharge energy and to provide a strong energy impulse for the triggering of chain processes of chemical decomposition of fuel molecules. For this reason, studies have been undertaken on the flow of electrical energy from the ignition system to the spark plug and on the formation of an electric discharge arc with a high concentration of thermal energy. The experimental results were obtained using an ignition coil energy test stand and a constant volume chamber with high-speed spark discharge recording capability. It was confirmed that increasing the charging time of the ignition coil from 0.5 ms to 5.0 ms increases the energy delivered to the coil from 9.5 mJ to 330 mJ. In the same range, the energy generated by the coil was recorded to range from 4.2 mJ to 70 mJ. The coil’s efficiency was found to decrease with increasing charging time from 45% up to 20.5%. Further energy losses were presented when the spark discharge energy was analyzed. In the paper, the results of investigations concerning electric discharge arc development have been presented, illustrated by a few exemplary photos, and discussed. The mathematical interpretation of the electrical energy flux in the ignition system resulting from the energy of the discharge arc has been conducted and illustrated by some functional independences and relationships.

Pages (from - to)

5091-1 - 5091-18

DOI

10.3390/en17205091

URL

https://www.mdpi.com/1996-1073/17/20/5091

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.