Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Soil burial degradation of chemically compatibilized poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(ε-caprolactone)/cellulose biocomposites

Authors

[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2024

Published in

International Journal of Biological Macromolecules

Journal year: 2024 | Journal volume: vol. 282, part 3

Article type

scientific article

Publication language

english

Keywords
EN
  • Biodegradable polymers
  • Soil burial biodegradation
  • Thermoplastic starch
Abstract

EN Developing bio-blends and biocomposites has become a widespread strategy to combat plastic pollution in line with sustainability principles and decarbonization necessities. Although chemically modified ternary and quaternary biocomposites are developing rapidly because of their broader processing and performance windows than single matrix and binary counterparts, a few have been reported about their biodegradation. Herein, diisocyanates-based chemically modified ternary biocomposites based on poly(butylene adipate-co-terephthalate), thermoplastic starch (TPS), poly(ε-caprolactone) (PCL), and cellulose (Mater-Bi/PCL/cellulose) are prepared and undergone soil burial biodegradation providing a broader perspective on biodegradation of complicated systems. The mass gain of sunflower sprouts, weight retention, and the appearance of biocomposites are studied and discussed in the course of biodegradation. The unfilled Mater-Bi/PCL bio-blends presented moderate mass loss over 12 weeks, attributed to the presence of TPS in the Mater-Bi phase. The PCL addition hindered TPS decomposition and featured a noticeably lower degradation rate compared to previous reports. A significant increase in the b* parameter (position on the blue-yellow axis in the CIELAB color space), along with the yellowness and whiteness indices, was observed. Prior to soil burial, roughness differences were negligible. Still, they significantly increased over time due to the higher hydrophilicity of unfilled Mater-Bi/PCL and biocomposite containing unmodified filler.

Date of online publication

28.10.2024

Pages (from - to)

136801-1 - 136801-15

DOI

10.1016/j.ijbiomac.2024.136801

URL

https://www.sciencedirect.com/science/article/pii/S0141813024076104

Comments

Article Number: 136801

Ministry points / journal

100

Impact Factor

7,7 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.