W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Dominance-Based Rough Set Approach to Multiple Criteria Ranking with Sorting-Specific Preference Information

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki, Politechnika Poznańska | [ P ] pracownik

Rok publikacji

2016

Typ rozdziału

rozdział w monografii naukowej

Język publikacji

angielski

Słowa kluczowe
EN
  • decision analysis
  • preference learning
  • ranking
  • dominance-based rough set approach
  • decision rules
  • assignment examples
Streszczenie

EN A novel multiple criteria decision aiding method is proposed, that delivers a recommendation characteristic for ranking problems but employs preference information typical for sorting problems. The method belongs to the category of ordinal regression methods: it starts with preference information provided by the Decision Maker (DM) in terms of decision examples, and then builds a preference model that reproduces these exemplary decisions. The ordinal regression is analogous to inductive learning of a model that is true in the closed world of data where it comes from. The sorting examples show an assignment of some alternatives to pre-defined and ordered quality classes. Although this preference information is purely ordinal, the number of quality classes separating two assigned alternatives is meaningful for an ordinal intensity of preference. Using an adaptation of the Dominance-based Rough Set Approach (DRSA), the method builds from this information a decision rule preference model. This model is then applied on a considered set of alternatives to finally rank them from the best to the worst. The decision rule preference model resulting from DRSA is able to represent the preference information about the ordinal intensity of preference without converting this information into a cardinal scale. Moreover, the decision rules can be interpreted straightforwardly by the DM, facilitating her understanding of the feedback between the preference information and the preference model. An illustrative case study performed in this paper supports this claim.

Strony (od-do)

155 - 171

DOI

10.1007/978-3-319-18781-5_9

URL

https://link.springer.com/chapter/10.1007/978-3-319-18781-5_9

Książka

Challenges in Computational Statistics and Data Mining

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.