W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Estimation of the Edge Crush Resistance of Corrugated Board Using Artificial Intelligence

Autorzy

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ 2 ] Instytut Mechaniki Stosowanej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.7] Inżynieria lądowa, geodezja i transport
[2.9] Inżynieria mechaniczna

Rok publikacji

2023

Opublikowano w

Materials

Rocznik: 2023 | Tom: vol. 16 | Numer: iss. 4

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • corrugated board
  • edge crush resistance
  • artificial intelligence
  • artificial neural network
  • deep learning
  • Gaussian processes
Streszczenie

EN Recently, AI has been used in industry for very precise quality control of various products or in the automation of production processes through the use of trained artificial neural networks (ANNs) which allow us to completely replace a human in often tedious work or in hard-to-reach locations. Although the search for analytical formulas is often desirable and leads to accurate descriptions of various phenomena, when the problem is very complex or when it is impossible to obtain a complete set of data, methods based on artificial intelligence perfectly complement the engineering and scientific workshop. In this article, different AI algorithms were used to build a relationship between the mechanical parameters of papers used for the production of corrugated board, its geometry and the resistance of a cardboard sample to edge crushing. There are many analytical, empirical or advanced numerical models in the literature that are used to estimate the compression resistance of cardboard across the flute. The approach presented here is not only much less demanding in terms of implementation from other models, but is as accurate and precise. In addition, the methodology and example presented in this article show the great potential of using machine learning algorithms in such practical applications.

Data udostępnienia online

15.02.2023

Strony (od-do)

1631-1 - 1631-17

DOI

10.3390/ma16041631

URL

https://www.mdpi.com/1996-1944/16/4/1631

Uwagi

Article Number: 1631

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

140

Impact Factor

3,1

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.