Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.


Download BibTeX


Mechanical and Rheological Evaluation of Polyester-Based Composites Containing Biochar


[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.8] Materials engineering
[2.9] Mechanical engineering

Year of publication


Published in


Journal year: 2024 | Journal volume: vol. 16 | Journal number: iss. 9

Article type

scientific article

Publication language


  • biodegradable polymers
  • biochar
  • composites
  • mechanical test

EN The use of biodegradable polymers as matrices in composites gives a wide range of applications, especially in niche areas. The assessment of the effect of the filler content on the change of mechanical properties makes it possible to optimize the composition for specific needs. Biochar was used as a filler in the studied composites with two different biodegradable blends as a matrix. Poly(1,4-butylene adipate-co-1,4-butylene terephthalate)/polylactide/biochar (PBAT/PLA/BC) and polylactide/poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]/biochar (PLA/P(3HB-co-4HB)/BC) composites with 0, 10, 15, 20 and 30 wt% of biochar underwent mechanical tests. The test results revealed a change in the properties of the composites related to the filler content. The results of the tensile test showed that increasing the biochar content increased the tensile modulus values by up to 100% for composites with 30 wt% of biochar, compared to unfilled matrices, and decreased the elongation associated with the breaking of PBAT/PLA and PLA/P(3HB-co-4HB) matrix composites. The elongation values at break of PBAT/PLA and PLA/(3HB-co-4HB) composites with 30 wt% biochar were reduced by 50% and 65%, respectively, compared to the unfilled matrices. PLA/P(3HB-co-4HB) matrix composites, in contrast to PBAT/PLA/BC, showed a decrease in tensile strength with the increases in filler content from 35.6 MPa for unfilled matrix to 27.1 MPa for PLA/P(3HB-co-4HB)/BC30 composites. An increase in filler content increased the brittleness of the composites regardless of the matrix used, as determined under the Charpy impact-test. This phenomenon was observed for all tested PLA/P(3HB-co-4HB) composites, for which the impact strength decreased from 4.47 kJ/m2 for the matrix to 1.61 kJ/m2 for the composite containing 30 wt% biochar. PBAT/PLA-based composites with 10 wt% of biochar showed slightly lower impact strength compared to the unfilled matrix, but composites with 30 wt% biochar showed 30% lower impact strength than PBAT/PLA. The complex viscosity value increased with increased filler content. For all composites tested on both polyester matrices, the viscosity decreased with increasing angular frequency.

Date of online publication


Pages (from - to)

1231-1 - 1231-16





Article Number: 1231

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal


Impact Factor

4,7 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.