Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Torsional and Transversal Stiffness of Orthotropic Sandwich Panels

Authors

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ 2 ] Instytut Mechaniki Stosowanej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering and transport
[2.9] Mechanical engineering

Year of publication

2020

Published in

Materials

Journal year: 2020 | Journal volume: vol. 13 | Journal number: iss. 21

Article type

scientific article

Publication language

english

Keywords
EN
  • transverse shear stiffness
  • plate torsion test
  • corrugated cardboard
  • sandwich plate
  • finite element method
  • shell element
Abstract

EN In the present work, an analytical equation describing the plate torsion test taking into account the transverse shear stiffness in sandwich plates is derived and numerically validated. Transverse shear becomes an important component if the analyzed plate or shell is thick with respect to the in-plane dimensions and/or its core has significantly lower stiffness than the outer faces. The popular example of such a sandwich plate is a corrugated cardboard, widely used in the packaging industry. The flat layers of a corrugated board are usually made of thicker (stronger) material than that used for the corrugated layer, the role of which is rather to keep the outer layers at a certain distance, to ensure high bending stiffness of the plate. However, the soft core of such a plate usually has a low transverse shear stiffness, which is often not considered in the plate analysis. Such simplification may lead to significant calculation errors. The paper presents the generalization of the Reissner’s analytical formula, which describes the torsional stiffness of the plate sample including two transverse shear stiffnesses. The paper also presents the implementation of the numerical model of the plate torsion test including the transverse shear stiffnesses. Both approaches are compared with each other on a wide range of material parameters and different aspect ratios of the specimen. It has been proved that both analytical and numerical formulations lead to an identical result. Finally, the performance of presented formulations is compared with other numerical models using commercial implementation of various Reissner–Mindlin shell elements and other analytical formulas from the literature. The comparison shows good agreement of presented theory and numerical implementation with other existing approaches.

Date of online publication

06.11.2020

Pages (from - to)

5016-1 - 5016-18

DOI

10.3390/ma13215016

URL

https://www.mdpi.com/1996-1944/13/21/5016

Comments

Article Number: 5016

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,623

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.