Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Mechanical Properties of Brass under Impact and Perforation Tests for a Wide Range of Temperatures: Experimental and Numerical Approach

Authors

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ 2 ] Instytut Silników Spalinowych i Napędów, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering and transport

Year of publication

2020

Published in

Materials

Journal year: 2020 | Journal volume: vol. 13 | Journal number: iss. 24

Article type

scientific article

Publication language

english

Keywords
EN
  • gas gun experimental technique
  • high rates of loading
  • brass properties
  • numerical simulations
  • failure criterion
Abstract

EN The originally performed perforation experiments were extended by compression and tensile dynamic tests reported in this work in order to fully characterize the material tested. Then a numerical model was presented to carry out numerical simulations. The tested material was the common brass alloy. The aim of this numerical study was to observe the behavior of the sample material and to define failure modes under dynamic conditions of impact loading in comparison with the experimental findings. The specimens were rectangular plates perforated within a large range of initial impact velocities V0 from 40 to 120 m/s and in different initial temperatures T0. The temperature range for experiments was T0 = 293 K to 533 K, whereas the numerical analysis covered a wider range of temperatures reaching 923 K. The thermoelasto-viscoplastic behavior of brass alloy was described using the Johnson–Cook constitutive relation. The ductile damage initiation criterion was used with plastic equivalent strain. Both experimental and numerical studies allowed to conclude that the ballistic properties of the structure and the ballistic strength of the sheet plates change with the initial temperature. The results in terms of the ballistic curve VR (residual velocity) versus V0 (initial velocity) showed the temperature effect on the residual kinetic energy and thus on the energy absorbed by the plate. Concerning the failure pattern, the number of petals N was varied depending on the initial impact velocity V0 and initial temperature T0. Preliminary results with regard to temperature increase were recorded. They were obtained using an infrared high-speed camera and were subsequently compared with numerical results.

Pages (from - to)

5821-1 - 5821-15

DOI

10.3390/ma13245821

URL

https://www.mdpi.com/1996-1944/13/24/5821/pdf

Comments

article number: 5821

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,623

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.