Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Segmentation of Preretinal Space in Optical Coherence Tomography Images Using Deep Neural Networks

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics and electrical engineering

Year of publication

2021

Published in

Sensors

Journal year: 2021 | Journal volume: vol. 21 | Journal number: no. 22

Article type

scientific article

Publication language

english

Keywords
EN
  • human eye image analysis
  • preretinal space
  • retinal layer segmentation
  • convolutional neural networks
  • UNet
  • optical coherence tomography
Date of online publication

12.11.2021

Pages (from - to)

7521-1 - 7521-26

DOI

10.3390/s21227521

URL

https://www.mdpi.com/1424-8220/21/22/7521

Comments

Article Number: 7521

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Ministry points / journal in years 2017-2021

100

Impact Factor

3,847

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.