Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Novel Adaptive Extended State Observer for Dynamic Parameter Identification with Asymptotic Convergence

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technologies

Year of publication

2022

Published in

Energies

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 10

Article type

scientific article

Publication language

english

Keywords
EN
  • parameter identification
  • extended state observer
  • persistent excitation
  • Lyapunov stability
Abstract

EN In this paper, a novel method of parameter identification of linear in parameter dynamic systems is presented. The proposed scheme employs an Extended State Observer to online estimate a state of the plant and momentary value of total disturbance present in the system. A notion is made that for properly redefined dynamics of the system, this estimate can be interpreted as a measure of modeling error caused by the parameter uncertainty. Under this notion, a disturbance estimate is used as a basis for classic gradient identification. A global convergence of both state and parameter estimates to their true values is proved using the Lyapunov approach under an assumption of a persistent excitation. Finally, results of simulation and experiments are presented to support the theoretical analysis. The experiments were conducted using a compliant manipulator joint and obtained results show the usefulness of the proposed method in drive control systems and robotics.

Date of online publication

14.05.2022

Pages (from - to)

3602-1 - 3602-22

DOI

10.3390/en15103602

URL

https://www.mdpi.com/1996-1073/15/10/3602

Comments

Article Number: 3602

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.