Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Ground lemon and stevia leaves as renewable functional fillers with antioxidant activity for high-density polyethylene composites

Authors

[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee | [ SzD ] doctoral school student

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Clean Technologies and Environmental Policy

Journal year: 2023 | Journal volume: in press

Article type

scientific article

Publication language

english

Keywords
EN
  • Polyethylene
  • Stevia
  • Lemon
  • Leaves
  • Functional filler
  • Composite
Abstract

EN The development of new sustainable material solutions in the processing of thermoplastic polymers concerns both the application of biopolymers and the use of valorized plant derivatives as fillers and modifiers of petrochemical polymers. Herein, the possibility of using unprocessed raw parts of two commonly used in the food industry leaves, i.e., lemon (LL) and stevia (ST), as active and functional fillers for high-density polyethylene (HDPE) has been verified. The series of composites containing 1, 2, and 5 wt% of ground leaves produced in the melt-mixing process were analyzed for thermal properties (DSC and TGA), and the antioxidant potential of the fillers was evaluated. Verifying the active effect of the ground leaves on the resistance to oxidation in the molten state was carried out by oxygen induction time (OIT by DSC) analysis and oscillatory rheology under steady-state shear conditions combined with spectroscopic (FTIR) carbonyl index (CI) analysis. Studies have shown that the introduction of 5 wt% of both types of leaves allows for a significant increase in the melt oxidation resistance (above 2 times longer OIT concerning HDPE, ~ 35 min) of composites without substantial changes in their crystalline structure and thermal stability. Determined after the long-term rheological measurements in an oxidative atmosphere CI showed 70 and 82% lower values for 5 wt% LL and ST composites compared to unmodified polyethylene.

Date of online publication

03.07.2023

DOI

10.1007/s10098-023-02565-5

URL

https://link.springer.com/article/10.1007/s10098-023-02565-5

License type

CC BY (attribution alone)

Open Access Mode

czasopismo hybrydowe

Open Access Text Version

final published version

Date of Open Access to the publication

in press

Ministry points / journal

140

Impact Factor

4,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.