Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Efficient Use of Secondary Raw Material from the Production of Polyamide Construction Products

Authors

[ 1 ] Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2024

Published in

Processes

Journal year: 2024 | Journal volume: vol. 12 | Journal number: iss. 7

Article type

scientific article

Publication language

english

Keywords
EN
  • polyamide
  • recycling
  • post-production waste
  • mechanical properties
Abstract

EN This study aimed to assess the possibility of using post-production waste and the impact of the conditioning method on the mechanical and thermomechanical properties of polyamide injection molded parts. Samples containing 5, 10, and 15 wt.% of ground post-production waste were produced using injection molding technology. The rheological properties by oscillatory rheometry, the melt mass flow rate (MFR), and the thermal stability by thermogravimetric analysis (TGA) of polymer mixtures containing recycled fraction were determined. The samples were conditioned under the following conditions: 24 h and 14 days in distilled water, in a climatic chamber, and aged in a xenon-light-accelerated aging chamber. Then, the impact and static tensile strength and heat deflection temperature (HDT) were assessed. The results show that the addition of post-production waste in the form of grinding does not significantly affect the mechanical and thermomechanical properties of the finished products. This research provides valuable information regarding the possibility of using secondary materials for manufacturing high-performance construction products. Moreover, it was proven that the process of conditioning polyamide samples in a climatic chamber was the most effective and significantly increased the impact strength of the tested material.

Date of online publication

23.06.2024

Pages (from - to)

1304-1 - 1304-13

DOI

10.3390/pr12071304

URL

https://www.mdpi.com/2227-9717/12/7/1304

Comments

Article Number: 1304

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

70

Impact Factor

2,8 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.