Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems

Authors

[ 1 ] Wydział Technologii Chemicznej, Politechnika Poznańska | [ 2 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ 3 ] Instytut Budownictwa, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering and transport
[7.6] Chemical sciences

Year of publication

2022

Published in

Materials

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 2

Article type

scientific article

Publication language

english

Keywords
EN
  • oxides
  • binary oxides
  • cement mortar
  • physicomechanical characteristics
  • antimicrobial properties
Abstract

EN In recent years, increasing attention has been paid to the durability of building materials, including those based on cementitious binders. Important aspects of durability include the increase of the strength of the cement matrix and enhancement of material resistance to external factors. The use of nanoadditives may be a way to meet these expectations. In the present study, zinc, titanium and copper oxides, used in single and binary systems (to better the effect of their performance), were applied as additives in cement mortars. In the first part of this work, an extensive physicochemical analysis of oxides was carried out, and in the second, their application ranges in cement mortars were determined. The subsequent analyses were employed in determining the physicochemical properties of pristine oxides: Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM), measurement of the particle size distribution, as well as zeta potential measurement depending on the pH values. Influence on selected physicomechanical parameters of the cement matrix and resistance to the action of selected Gram-positive and Gram-negative bacteria and fungi were also examined. Our work indicated that all nanoadditives worsened the mechanical parameters of mortars during the first 3 days of hardening, while after 28 days, an improvement was achieved for zinc and titanium(IV) oxides. Binary systems and copper(II) oxide deteriorated in strength parameters throughout the test period. In contrast, copper(II) oxide showed the best antibacterial activity among all the tested oxide systems. Based on the inhibitory effect of the studied compounds, the following order of microbial susceptibility to inhibition of growth on cement mortars was established (from the most susceptible, to the most resistant): E. coli < S. aureus < C. albicans < B. cereus = P. aeruginosa < P. putida.

Date of online publication

16.01.2022

Pages (from - to)

661-1 - 661-23

DOI

10.3390/ma15020661

URL

https://www.mdpi.com/1996-1944/15/2/661

Comments

Article Number: 661

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Release date

16.01.2022

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.