Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Response Surface Methodology Analysis of Pyrolysis Reaction Rate Constants for Predicting Efficient Conversion of Bulk Plastic Waste into Oil and Gaseous Fuels

Authors

[ 1 ] Instytut Inżynierii Środowiska i Instalacji Budowlanych, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ 2 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering
[2.10] Environmental engineering, mining and energy

Year of publication

2022

Published in

Energies

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 24

Article type

scientific article

Publication language

english

Keywords
EN
  • rate constant
  • activation energy
  • frequency factor
  • RSM
  • design expert
  • MATLAB
Abstract

EN The growing production of plastic waste and improper dumping after use has become a worldwide challenge. This waste is a substantial source of petroleum and can be effectively converted into pyrolytic oil and other useful products. A statistical prediction of the rate constants is essential for optimizing pyrolysis process parameters, such as activation energy (Ea), frequency factor (Ao), temperature (T), and kinetic rate constants (k). In this research, we utilized Box–Behnken using RSM with Design Expert software to predict statistical rate constants at 500 °C and 550 °C. The efficiency of the predicted rate constants was investigated and compared to the findings of experimental rate constants extracted from the literature. At 500 °C, the estimated rate constants did not reveal a significant rise in the oil output since these constants promoted high gas yield. Compared to the experimental rate constants, statistically predicted rate constants at 550 °C demonstrated substantially high-oil output with only 1% byproducts. The experimental rate constants yielded 32% oil at 550 °C, whereas the predicted rate constants yielded 85% oil. The statistically predicted rate constants at 550 °C could be used to estimate commercial-scale extraction of liquid fuels from the pyrolysis of high-density plastics. It was also concluded that Ea, Ao, and T must be analyzed and optimized according to the reactor type to increase the efficiency of the expected rate constants.

Date of online publication

17.12.2022

Pages (from - to)

9594-1 - 9594-17

DOI

10.3390/en15249594

URL

https://www.mdpi.com/1996-1073/15/24/9594

Comments

Article Number: 9594

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.