Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

The Influence of the Hardness of the Tested Material and the Surface Preparation Method on the Results of Ultrasonic Testing

Authors

[ 1 ] Instytut Maszyn Roboczych i Pojazdów Samochodowych, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ 2 ] Instytut Mechaniki Stosowanej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport
[2.9] Mechanical engineering

Year of publication

2023

Published in

Applied Sciences

Journal year: 2023 | Journal volume: vol. 13 | Journal number: iss. 17

Article type

scientific article

Publication language

english

Keywords
EN
  • non-destructive testing
  • ultrasonic testing
  • surface roughness
  • hardness
Abstract

EN Non-destructive ultrasonic testing can be used to assess the properties and condition of real machine elements during their operation, with limited (one-sided) access to these elements. A methodological question then arises concerning the influence of the material properties of such elements and the condition of their surfaces on the result of ultrasonic testing. This paper attempts to estimate the influence of material hardness and surface roughness on the result of such testing study area testing machine or plant components of unknown exact thickness. Ultrasonic testing was carried out on specially prepared steel samples. These samples had varying surface roughness (Ra from 0.34 to 250.73 µm) of the reflection surface of the longitudinal ultrasonic wave (the so-called reflectors) and hardness (32 and 57 HRC). The ultrasonic measures were the attenuation of the wave, estimated by the decibel drop in the gain of its pulses, and the propagation velocity of the longitudinal ultrasonic wave. Ultrasonic transducers (probes) of varying frequencies (from 2 to 20 MHz), excited by a laboratory and industrial defectoscope were used as the source of such a wave. The results of our research provide a basis for the recommendation of two considered ultrasonic quantities for assessing the material properties of the tested element. This is of particular importance when testing machines or plant components of unknown exact thickness and unknown roughness of inaccessible surfaces, which are the reflectors of the longitudinal ultrasonic wave used for testing. It has been demonstrated that by using the ultrasonic echo technique, it is possible to evaluate the roughness and hardness of the tested elements.

Pages (from - to)

9904-1 - 9904-13

DOI

10.3390/app13179904

URL

https://www.mdpi.com/2076-3417/13/17/9904

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

100

Impact Factor

2,7 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.