Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

A New Method of Reducing the Inrush Current and Improving the Starting Performance of a Line-Start Permanent-Magnet Synchronous Motor

Authors

[ 1 ] Instytut Elektrotechniki i Elektroniki Przemysłowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technology

Year of publication

2024

Published in

Energies

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 5

Article type

scientific article

Publication language

english

Keywords
EN
  • finite element analysis (FEA)
  • inrush current limiting
  • LSPMSM start-up
  • energy loss limiting
Abstract

EN This paper presents a new method of reducing the inrush current and improving the starting performance of a line-start permanent-magnet synchronous motor (LSPMSM). The novelty of the proposed method relies on the selection of the time instant of the connection of the stator winding to the grid, for which the smallest values of the amplitudes of inrush currents are obtained. To confirm the effectiveness of the developed method of limiting the inrush current, simulations and experimental studies were carried out. The algorithm and dedicated computer code developed by the authors for the analysis of transient coupled phenomena in the LSPMSM were used to study the impact of the time instant of connection of the winding to the grid on the motor start-up process. The algorithm was based on a field model of coupled electromagnetic and thermal phenomena in the studied motor. To verify the developed model of the phenomena and the proposed method, experimental research was carried out on a purpose-built computerised test stand. Good concordance between the results of the experiments and simulations confirmed the high reliability of the proposed model, as well as the effectiveness of the developed approach in limiting the inrush current and improving the starting performance of LSPMSMs.

Date of online publication

22.02.2024

Pages (from - to)

1040-1 - 1040-19

DOI

10.3390/en17051040

URL

https://www.mdpi.com/1996-1073/17/5/1040

Comments

Article number: 1040

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.