W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Estimation of corn crop damage caused by wildlife in UAV images

Autorzy

[ 1 ] Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ 2 ] Instytut Robotyki i Inteligencji Maszynowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ SzD ] doktorant ze Szkoły Doktorskiej | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.2] Automatyka, elektronika, elektrotechnika i technologie kosmiczne

Rok publikacji

2024

Opublikowano w

Precision Agriculture

Rocznik: 2024 | Tom: in press

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • corn crops damages
  • aerial images
  • UAV
  • deep convolutional neural networks
Streszczenie

EN This paper proposes a low-cost and low-effort solution for determining the area of corn crops damaged by the wildlife facility utilising field images collected by an unmanned aerial vehicle (UAV). The proposed solution allows for the determination of the percentage of the damaged crops and their location. The method utilises image segmentation models based on deep convolutional neural networks (e.g., UNet family) and transformers (SegFormer) trained on over 300 hectares of diverse corn fields in western Poland. A range of neural network architectures was tested to select the most accurate final solution. The tests show that despite using only easily accessible RGB data available from inexpensive, consumer-grade UAVs, the method achieves sufficient accuracy to be applied in practical solutions for agriculture-related tasks, as the IoU (Intersection over Union) metric for segmentation of healthy and damaged crop reaches 0.88. The proposed method allows for easy calculation of the total percentage and visualisation of the corn crop damages. The processing code and trained model are shared publicly.

Strony (od-do)

1 - 26

DOI

10.1007/s11119-024-10180-7

URL

https://link.springer.com/article/10.1007/s11119-024-10180-7

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

czasopismo hybrydowe

Wersja tekstu w otwartym dostępie

ostateczna wersja autorska

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Punktacja Ministerstwa / czasopismo

140

Impact Factor

5,4 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.