Novel Mesoporous Organosilicas with Task Ionic Liquids: Properties and High Adsorption Performance for Pb(II)
[ 1 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ 2 ] Instytut Fizyki, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] employee | [ D ] phd student | [ S ] student
2022
scientific article
english
- ionic liquid
- adsorbent
- functionalized silica
- Pb(II) removal
EN Removal of toxic contaminants such as Pb(II) from waste solutions is environmentally requested. Therefore, in this paper, for potential novel sorbents, mesoporous ionic liquid-functionalized silicas were synthesized and tested for the removal of Pb(II) from aqueous solutions. The successful synthesis of the adsorbents was proved by nuclear magnetic resonance (29Si and 13C NMR), Fourier transform infrared spectroscopy (FTIR), and elemental analysis. The structural and textural properties were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), and low-temperature N2 sorption, and the result showed that the applied procedure made it possible to obtain highly ordered particles with a two-dimensional mesostructure. The effects of several parameters including initial pH, contact time, adsorption temperature, and Pb(II) concentration were studied in detail and were discussed to evaluate the adsorption properties of the fabricated materials towards Pb(II). The obtained results confirmed a very high potential of the sorbents; however, the adsorption properties depend on the structure and amounts of the functional group onto fabricated materials. The sample ILSOx3-40 showed fast kinetics (equilibrium reached within 10 min) and capacity of 172 mg/g, and that makes it a promising sorbent for the cleanup of water contaminated by lead. It was also indicated that, regardless on structure of the tested materials, the Pb(II) removal was spontaneous and exothermic. The fabricated mesoporous silicas exhibited that they were easy to regenerate and had excellent reusability
18.02.2022
1405 - 1 - 1405 - 20
Article Number: 1405
Politechnika Poznańska
CC BY (attribution alone)
open journal
final published version
18.02.2022
at the time of publication
public
140
4,6