Saw-sedge Cladium mariscus as a functional low-cost adsorbent for effective removal of 2,4-dichlorophenoxyacetic acid from aqueous systems
[ 1 ] Wydział Technologii Chemicznej, Politechnika Poznańska | [ 2 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ D ] doktorant | [ P ] pracownik
2016
artykuł naukowy / referat
angielski
- low-cost adsorbents
- Cladium mariscus
- adsorption
- 2,4-dichlorophenoxyacetic acid
- thermodynamic studies
EN For the first time in the published literature, a study is described concerning the use of the saw-sedge Cladium mariscus (C. mariscus) for adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous systems. Among the experiments carried out, the elemental composition of C. mariscus was determined (C = 48.0 %, H = 7.1 %, N = 0.95 %, S = 0.4 %), FTIR spectroscopic analysis was performed to confirm the chemical structure of the adsorbent, and porous structure parameters were measured: BET surface area (A BET = 0.6 m2/g), total pore volume (V p = 0.001 cm3/g) and average pore size (S p = 6.6 nm). It was shown that the effectiveness of removal of 2,4-D from aqueous systems using C. mariscus depends on parameters of the process: contact time, system pH, mass of sorbent, and temperature. Maximum adsorption was attained for a solution at pH = 3. Further increase in the alkalinity of the tested systems led to a reduction in the effectiveness of the process. The kinetic of adsorption of 2,4-D by C. mariscus was also determined, and thermodynamic aspects were investigated. The experimental data obtained correspond to a pseudo-second-order kinetic model of type 1. Additionally the negative values obtained for ΔHº indicate that the process is exothermic, and the negative values of ΔGº show it to be spontaneous. As the temperature of the system increases the spontaneity of adsorption is reduced, in accordance with the exothermic nature of the process.
517 - 529
czasopismo hybrydowe
ostateczna wersja opublikowana
publiczny
30
2,074
WoS (15)