Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems

Authors

[ 1 ] Instytut Elektroenergetyki, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ 2 ] Instytut Elektrotechniki i Elektroniki Przemysłowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technology
[2.10] Environmental engineering, mining and energy

Year of publication

2023

Published in

Energies

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 6

Article type

scientific article

Publication language

english

Keywords
EN
  • power transformers
  • insulating liquid
  • temperature distribution
  • heat transfer
Abstract

EN The power transformer plays an important role in electric power systems. One of the conditions for the proper operation of the transformer is to ensure a sufficiently low temperature. This condition can be met if the heat exchange is effective. Heat transfer depends, among other things, on the electrically insulating liquid. The thermal property describing the ability of a liquid to transfer heat is the heat transfer coefficient α. At the design stage of the transformers, it is most often assumed that the value of the α coefficient is constant and equal to 100 W·m−2·K−1. Such simplifications can lead to the improper design of the transformer since this factor depends on many factors. The article presents the results of research on the dependence of the heat transfer coefficient α on the type of electrical insulation liquid, the thermal load of the cooled surface, and the length of the heating element. Four types of electrical insulating liquids were considered: mineral oil, synthetic ester, natural ester, and natural ester with reduced viscosity. The obtained results prove that the type of electrical insulating liquid and the thermal surface load value affect the α coefficient. The length of the heating element did not affect the α factor.

Pages (from - to)

2627-1 - 2627-15

DOI

10.3390/en16062627

URL

https://www.mdpi.com/1996-1073/16/6/2627

Comments

article number: 2627

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.