Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Spent Coffee as a Composite Filler for Wastewater Treatment

Authors

[ 1 ] Instytut Inżynierii Środowiska i Instalacji Budowlanych, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ 2 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ P ] employee | [ D ] phd student

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy
[7.6] Chemical sciences

Year of publication

2023

Published in

Materials

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 3

Article type

scientific article

Publication language

english

Keywords
EN
  • composite with a natural filler
  • moving bed technology
  • MBBR
  • spent coffee grounds (SCG)
  • wastewater treatment technologies
  • wettability
Abstract

EN Currently composites play an important role in all aspects of engineering and technology, with constantly growing applications. Recently, more attention was focused on natural fillers due to their suitability as reinforcement materials in thermo-plastic matrices which improve the mechanical properties of these polymers. Biofillers are used due to their low cost, high strength rigidity, non-toxicity, biodegradability, and availability. Currently, spent coffee grounds (SCG) are attracting more attention as a natural filler since high amounts of SCG are generated every day (food waste of coffee processing). This study allowed us to determine the long-term effect of activated sludge microorganisms with known technical and technological parameters on the mechanical properties of composites with spent coffee grounds filler. The fittings consisted of high-density poly-ethylene (PE-HD), which was used as the matrix, and a filler based on spent coffee grounds (SCG), which was used as a modifier. It was established that the composition of the composite and its residence time in the bioreactor directly influenced the contact angle value. The shift of the contact angle value is associated with the formation of the biofilm on the tested materials. An increase in the contact angle was observed in the case of all samples tested in the bioreactor, with the lowest values equal to approx. 76.4° for sample A (PE-HD) and higher values of approx. 90° for the remaining composite samples with a coffee grounds filler. The research confirmed that the increased ratio of coffee grounds in the composite results in the increased diversity and abundance of microorganisms. The highest number and the greatest diversity of microorganisms were observed in the case of the composite with 40% coffee grounds after more than a year of exposure in the bioreactor, while the composite with 30% SCG was second. Ciliates (Ciliata), especially the sessile forms belonging to the Epistylis genus, were the most common and the most numerous group of microorganisms in the activated sludge and in the biofilm observed on the samples after immersion in the bioreactor. The conducted research confirms that the use of polymer composite mouldings with a filler in the form of spent coffee grounds as a carrier allows the efficient increase in the population of microorganisms in the bioreactor.

Date of online publication

30.01.2023

Pages (from - to)

1181-1 - 1181-18

DOI

10.3390/ma16031181

URL

https://www.mdpi.com/1996-1944/16/3/1181

Comments

Article Number: 1181

Ministry points / journal

140

Impact Factor

3,4 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.