Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Damage Prediction for Integrated DEAP and MRE Soft Actuators

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ 2 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ 3 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technology
[2.3] Information and communication technology
[7.6] Chemical sciences

Year of publication

2024

Published in

Energies

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 11

Article type

scientific article

Publication language

english

Keywords
EN
  • soft robotics
  • soft materials
  • DEAP and MRE actuators
  • testing
  • microdamage
Abstract

EN Soft robotics is a hot scientific topic in areas such as medicine and medical care, implantology, haptic technologies, and the design of various flexible structures. Integrated actuators (DEAP and MRE) are characterized by special functionality and a wider range of operations than when used individually. Such actuators can later be controlled with high voltages ranging from several to a dozen or so kV. Unfortunately, the production process of integrated actuators is multi-stage and therefore more complicated. Thus, at the stage of prototyping, microscopic errors often occur that cannot be detected using simple measurement methods. The result of such errors is actuator damage at the testing stage or in subsequent application. Unfortunately, due to high voltages, actuator damage usually leads to it catching fire, which is potentially dangerous. This work presents an approach that enables the prediction of actuator damage at the testing stage. The results of modeling damaged actuators, a modified safe testing method, and a complete supervising system for testing the actuator with protection are shown. The work is also enriched with a set of data from the analyzed damage to DEAP and MRE actuators, which may prove useful in other research on the actuators of soft robotics.

Date of online publication

04.06.2024

Pages (from - to)

2745-1 - 2745-13

DOI

10.3390/en17112745

URL

https://www.mdpi.com/1996-1073/17/11/2745

Comments

Article Number: 2745

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.