Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Sorption of ionic liquids in soil enriched with polystyrene microplastic reveals independent behavior of cations and anions

Authors

[ 1 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ 2 ] Instytut Chemii i Elektrochemii Technicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ SzD ] doctoral school student | [ S ] student | [ P ] employee

Scientific discipline (Law 2.0)

[7.6] Chemical sciences

Year of publication

2023

Published in

Chemosphere

Journal year: 2023 | Journal volume: vol. 341

Article type

scientific article

Publication language

english

Keywords
EN
  • Sorption isotherms
  • Cationic surfactants
  • Soil environment
  • Herbicidal ionic liquids
  • Choline
Abstract

EN Recently, much attention has been focused on the application of the Ionic Liquids (ILs) with herbicidal activity in agriculture. It has been suggested that through the appropriate selection of cations and anions, one can adjust the properties of ILs, particularly the hydrophobicity, solubility, bioavailability, toxicity. In practical agricultural conditions, it will be beneficial to reduce the mobility of herbicidal anions, such as the commonly applied 2,4- dichlorophenoxyacetic acid [2,4-D] in the soil. Furthermore, microplastics are becoming increasingly prevalent in the soil, potentially stimulating herbicidal sorption. Therefore, we investigated whether cations in ILs influence the mobility of anions in OECD soil supplemented with polystyrene microplastic (PS). For this purpose, we used the 2,4-D based ILs consisting of: a hydrophilic choline cation [Chol][2,4-D] and a hydrophobic choline cation with a C12chain [C12Chol][2,4-D]. Characterization of selected micropolystyrene was carried out using the BET sorption-desorption isotherm, particle size distribution and changes in soil sorption parameters such as soil sorption capacity and cation exchange capacity. Based on the batch sorption experiment, the effect of microplastic on the sorption of individual cations and anions in soil contaminated with micropolystyrene was evaluated. The results obtained indicate that the introduction of a 1–10% (w/w) PS resulted in an 18–23% increase of the soil sorption capacity. However, the sorption of both ILs’ cations increased only by 3–5%. No sorption of the [2,4-D] anion was noted. This suggests that cations and anions forming ILs, behave independently of each other in the environment. The results indicate the fact that ILs upon introduction into the environment are not a new type of emerging contaminant, but rather a typical mixture of ions. It is worth noting that when analyzing the behavior of ILs in the environment, it is necessary to follow the fate of both cations and anions.

Date of online publication

24.08.2023

Pages (from - to)

139927-1 - 139927-12

DOI

10.1016/j.chemosphere.2023.139927

URL

https://www.sciencedirect.com/science/article/abs/pii/S0045653523021963

Comments

Article number: 139927

Ministry points / journal

140

Impact Factor

8,1

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.